Hydraulic Rotary Actuators, HTR Series **Contents**

HTR Series Hydraulic Rack & Pinion Rotary Actuators	
Market Segments and Applications	A48
Features	A49
Ordering Information	A50-A51
Specifications	A52-A53
Engineering Data	A54-A55
Dimensional Data	A56-A57
Options	
Cushions	A58
Stroke Adjusters	A59
Mounting	A60
Shaft	A61
Port Threads, Port Location	A62
Seals	A63
Proximity Sensors	A64
Feedback Packages	A64

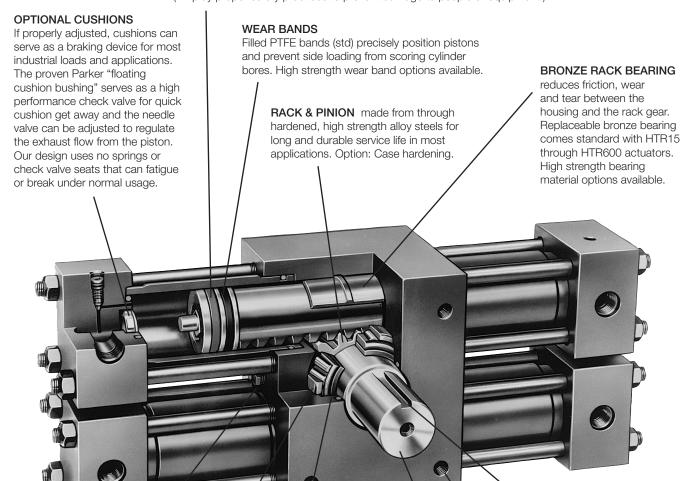
Rack & Pinion Actuators

> HUB Series

LIR Series

Series

M Series


				Pro	oduct Se	ries	
	Market/Segment	Typical Application(s)	HUB	LTR	HTR	М	Tork-Mor
	Aerospace	Water bomb, tank door actuation		•			
	Aggregate	Granite block rollover			•		
	Aluminum	Automation				•	
	Automation	Mounting, Processing, Flood gate actuation, End of arm tooling	•	•	•		•
	Automotive	Automation, Clamping, Tube bending			•		•
	Conveyor	Swing & rotate		•	•		•
	Entertaining	Pool gate actuation, Robotic joint motion					•
	Fluid Management & Flow Control	Power plants			•	•	
	Industrial	Automation, Clamping					•
SI	Machine Builders	End of arm tooling			•		
atior	Marine/Offshore	Boomslewer, Submersible			•	•	
pplica	Mining	Mobile longhole drilling, Tunnel boring	•		•	•	
Market Segments/Applications	Mobile	Fire truck ladder rotation, Aerial lift basket, X-ray boom rotation, Forklift handling & storage, Refuse tippers	•	•	•	•	
t Se	Nuclear	Door actuation				•	
arke	Oil & Gas	Process valve actuation	•		•		
Ž	Oil Industry Machinery	Clamping, Lockout	•				•
	Paper & Pulp	Walking beam				•	
	Plastics	Blow molding, Injection molding			•		•
	Rubber	Mixing			•	•	
	Solar	Panel rotation			•		
	Space	Rocket launch tower				•	
	Steel & Casting	Ladle Tilt, Coil Box, Steel Booming, Pipe fabrication			•	•	•
	Testing Equipment	Flight Simulators, Cycle loading, Tensile test Machines			•		•
	Transportation	Bus wheelchair ramp		•			
	Water Management		•		•		
	Welding	Weld gun indexing, Clamping					•

HTR Series

PISTON SEALS

Depending on actuator size, either dual lip seals made from abrasion resistant polyurethane or heavy duty, deep section Polypak seals made from Molythane for dependable service in most applications. Options: Fluorocarbon seals for certain synthetic fluids; and carboxilated nitrile seals for water based fluids. Piston seals can be inspected and replaced without disconnecting the load from the shaft. (Employ proper safety practices to prevent damage to people or equipment.)

RELIEF VALVE is

designed to prevent the housing from seeing pressure due to piston seal bypass. Seal kits are available.

> **TAPERED ROLLER BEARINGS** are generously sized to support large external axial and radial loads applied to the shaft.

PINION SEALS

Dual lobed seal of abrasion resistant materials seals effectively with minimum wear at dynamic conditions. HOUSING

The heavy, high strength, shock resistant, ductile iron housing serves as a firm base to drive large output torque requirements.

bolt holes drilled and tapped on the front and back of the housing. Options: additional pilot ring or base mount.

THREADED MOUNTING HOLES

Our standard mounting uses four

KEYWAY

Mid stroke at 12:00 position is standard

STANDARD MALE KEYED SHAFT

is made integral with the pinion gear and is suitable for most applications. Options: double male key, hollow bore keyed and spline shafts are available.

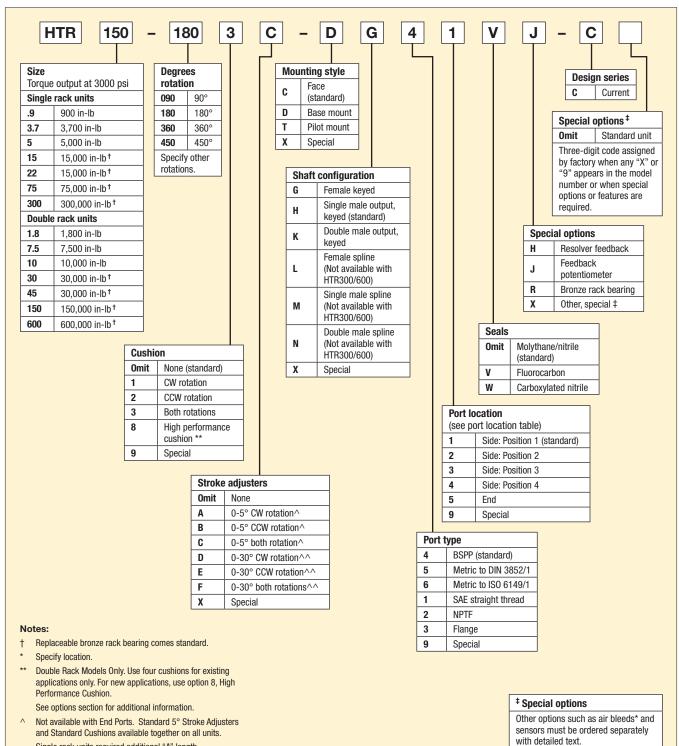
Rack & Pinion Actuators

LTR Series

Ordering Information - Inch

Ordering information - Inch

												1						٦
Size	tt -t 2000		Degre				Mou	nting sty	е							De	sign series	
	e output at 3000 p e rack units	JSI	rotatio	90°			Α	Face (standar	4/							С	Current	
.9	900 in-lb		180	180°			В	Base mo	_									
3.7	3,700 in-lb		360	360°			P	Pilot mo									al options ‡	
5	5,000 in-lb		450	450°			Х	Special								Omit	Standard	
15	15,000 in-lb†		Specify	other													digit code assiq	
22	15,000 in-lb†		rotatio				Shaf	t configu	ration		\neg					"9" ap	pears in the mo	de
75	75,000 in-lb†						A	Female									r or when spec	
300	300,000 in-lb†						В		male key	/ed						require	s or features an ed.)
Double	e rack units							(standa										
1.8	1,800 in-lb						С	+	male ke							otions		
7.5	7,500 in-lb						D		10B spl ailable v						<u> </u>	- i	ces allowed)	
10	10,000 in-lb						ט	HTR30		vitil					Н	_	er feedback	
30	30,000 in-lb†							-	male 10	B spline					J	_	potentiometer	_
45	30,000 in-lb†						E	(Not av	ailable v						R		rack bearing	-
150	150,000 in-lb†							HTR30		ND 11					X	Other,	special ‡	_
600	600,000 in-lb [†]						F		male 10 ailable v)B spline				Seals				
					Щ		1	HTR30						0mit	Molyt	hane/nitrile		
		Cush					J		involute						(stand	lard)		
		Omit	_	(standard)			<u> </u>	,	0/600 o	• /				V		carbon		
		2	CW ro		_		P		male inv 0/600 o	olute splir	ne			W	Carbo	xylated nitril	e	
		3	+	otation otations				<u> </u>		volute spli	ine	Ιг	Port loca	ation				
		4		ushions *	+		V		0/600 o				(see port		n table)		
		8	+	performano	_		Х	Specia								(standard)		
		١	cushic		,,		-						_	Side: Po		· ,		
		9	Specia	al									3	Side: Po	sition 3			
													4	Side: Po	sition 4			
				Stroke	adju	ısters							5	End				
				Omit	Nor	ne							9	Special				
				Α			otation^				D.	ort to	mo					
				В			rotation/				P	ort ty	•	ight the	and			
				C	_		rotation^				1		SAE stra (standar		au			
				D	_		rotation/				2	\neg	NPTF	,				
				E	_		V rotation				3		Flange					
				F			rotation	s^^			9		Special					
				X	Spe	cial												
lotes:																		
	laceable bronze rack	bearing o	comes sta	ndard.														
Repl	s: eplaceable bronze rack bearing comes standard.																	_


- See options section for additional information.
- $^{\wedge}$ $\,$ Not available with End Ports. Standard 5° Stroke Adjusters and Standard Cushions available together on all units. Single rack units require additional "A" length.
- ^^ Not Available with End Ports or Cushions.

Rack & Pinion Actuators

Ordering Information - Metric

Ordering information - Metric

A51

Single rack units required additional "A" length. ^^ Not Available with End Ports or Cushions

The HTR Series rotary actuator incorporates many hydraulic and mechanical features that make this actuator both robust and ideal for the most demanding high production applications. These features include: high load capability tapered roller bearings; a chrome alloy steel rack and pinion gear set; a high strength ductile iron or steel housing; and proven Parker Hannifin cylinder components.

The HTR Series actuators have been successfully employed in automotive plant production machinery; machine tool equipment; plastics and rubber processing machinery; basic metals production machinery and in material handling machinery. The HTR Series can be employed as an integral machine component, where the actuator can simultaneously transmit torque and support the line shaft or the load. Such an arrangement allows for the elimination of one set of external support bearings.

Optional cushions can also be incorporated to decelerate external loads, thus eliminating the need for an external deceleration device such as shock absorbers or brakes. Additionally, machine installations can be simplified with the hollow shaft feature by eliminating additional coupling. This is achieved by means of a square shaft key or if needed the housing can be drilled and tapped to mount various brackets. For easy serviceability, the piston seals can be inspected and replaced while the actuator remains installed on the machinery.

- Hydraulic cushions to minimize noise, vibration shock and assist deceleration control
- Reed, Hall Effect or proximity switches for position sensing
- End-of-rotation stroke adjusters for load position control and accurate rotation adjustment
- Built-in meter out flow control valves with reverse flow check valves provide a neat package
- Three position option can be used with many special machine and material handling applications
- Rack and pinion design provides excellent efficiency characteristics (90-95%) and minimizes HPU Size
- Minimal Heat Build Up, Limits Need for Heat Exchanger Large Hollow Gears Offer More Shaft Options
- HTR series are designed for Low Wear on dynamic seals and longer life
- Excellent in High Speed Production Applications

Hydraulic Rotary Actuators, HTR Series **Specifications**

Operating information

Output torques @

3000 PSI (207 bar): 900 in-lb to 600,000 in-lb

(Larger output torques available

upon request)

Maximum operating pressure: 3000 PSI (207 bar) non-shock except HTR22/45: 2000 PSI (138 bar) non-shock

Operating temperature range:

Nitrile seals -40°F to 180°F (-40°C to 82°C) Fluorocarbon seals -5°F to 250°F (-21°C to 121°C)

Standard rotations: 90°, 180°, 360°, 450°

Rotational tolerance: -0°, +2°

Maximum breakaway pressure: 70 PSIG (4.8 bar)
Mounting orientation: Unrestricted

Standard timing: Keyway in 12:00 position at

midstroke

Recommended filtration: ISO class 17/14 or better

Rack & Pinion Actuators

Parker Pneumatic

Model Single rack HTR.9		Maximum	Actual ou	tput torque) at specifie	, d pressure	Gear trai		Maximum			Standard
Single	Double rack	Pressure Rating, PSI (bar)		2000 PSI (138 bar)	3000 PSI (207 bar)	inch-lbf ⁽²⁾	PSID (3)	angular backlash, minutes ⁽⁴⁾	Standard rotation degrees	Displacement in ³ (cm ³)	unit
									90	0.57 (9.3)	11 (5)
HTR.9		3000 (207)	300 (34)	600 (68)	900 (102)	400	1340	45	180	1.13 (19)	14 (6)
		(201)	(34)	(00)	(102)				360	2.27 (37)	20 (9)
									90	1.13 (19)	16 (7)
	HTR1.8	3000 (207)	600 (68)	1200 (136)	1800 (203)	850	1420	45	180	2.27 (37)	19 (9)
		(201)	(00)	(130)	(203)				360	4.53 (74)	25 (11)
									90	2.43 (40)	28 (13)
HTR3.7		3000	1250	2500	3700	1570	1300	40	180	4.86 (80)	31 (14)
		(207)	(141)	(283)	(418)				360	9.71 (159)	37 (17)
									90	4.86 (79)	35 (16)
	HTR7.5	3000	2500	5000	7500	3330	1350	40	180	9.71 (159)	41 (19)
		(207)	(283)	(565)	(848)				360	19.4 (318)	53 (24)
									90	3.12 (51)	37 (17)
HTR5		3000	1650	3300	5000	2700	1620	30	180	6.25 (102)	39 (18)
		(207)	(186)	(373)	(565)				360	12.50 (205)	49 (22)
									90	6.25 (102)	45 (20)
	HTR10	3000	3300	6600	10000	5725	1720	30	180	12.50 (205)	54 (25)
		(207)	(373)	(746)	(1130)				360	25.0 (410)	66 (30)
			-						90	8.9 (145)	55 (25)
HTR15		3000	5000	10000	15000	9300	1860	25	180	17.8 (291)	60 (27)
		(207)	(565)	(1130)	(1695)				360	36.5 (582)	70 (32)
									90	17.8 (291)	89 (40)
	HTR30	3000	10000	20000	30000	19700	1970	25	180	35.5 (582)	97 (44)
		(207)	(1130)	(2260)	(3390)				360	71.0 (1164)	117 (53)
									90	13.9 (227)	60 (27)
HTR22		2000	7500	15000	_	9300	1240	25	180	27.8 (455)	66 (30)
		(138)	(848)	(1695)					360	55.5 (910)	79 (36)
									90	27.8 (455)	98 (45)
	HTR45	2000	15000	30000	_	19700	1320	25	180	55.5 (910)	108 (49)
		(138)	(1695)	(3390)					360	111 (1819)	134 (61)
									90	46 (754)	197 (90)
HTR75		3000	25000	50000	75000	25000	1000	25	180	92 (1508)	219 (100)
		(207)	(2825)	(5650)	(8475)				360	184 (3016)	263 (120)
									90	92 (1508)	321 (146)
	HTR150	3000	50000	100000	150000	53000	1060	25	180	184 (3016)	367 (167)
		(207)	(5650)	(11300)	(16950)				360	368 (6032)	454 (206)
									90	178 (2913)	760 (345)
HTR300		3000	100000	200000	300000	125000	1250	20	180	355 (5827)	840 (382)
		(207)	(11300)	(22600)	(33900)		-		360	711 (11653)	910 (414)
									90	355 (5827)	1110 (505)
	HTR600	3000 (207)	200000 (22600)	400000 (45200)	600000	265000	1325	20	180	711 (11653)	1260 (573)
				1716111111	(67800)		-			,,	()

The durability is defined as the capacity of the gear set to support the stated load without fatigue related gear surface damage.
 Use the durability ratings for high production duty of 1 million cycles and/or high speed applications (180° in less than three seconds or more than one cycle per minute).

^{4.} To minimize backlash in the actuator, order a double rack a few degrees longer and add stroke adjusters.

^{2.} Durability rated output torque.

^{3.} Pressure differential between the inlet and outlet ports (non shock).

Engineering Data

Kinetic Energy Capacity

The energy values below assume drive pressure is maintained through cushion stroke.

Single Rack Units with Single Set of Cushions (20°)

				Kinetic Ener	gy Rating	g (in-lb) of Cu	shion at	Specified Dri	ve Press	ure*		
	0 PSI		500 PS	SI .	1000 P	SI	1500 P	SI	2000 P	SI	2500 P	SI
Model	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
HTR.9	314	140	262	140	209	140	157	140	105	105	52	52
HTR3.7	1309	548	1091	548	872	548	654	548	436	436	218	218
HTR5	1745	942	1454	942	1163	942	873	873	582	582	291	291
HTR22	5235	3246	4362	3246	3490	3246	2618	2618	1745	1745	872	872
HTR75	5235	3246	3926	3246	2618	2618	1309	1309	0	0	0	0
HTR75	26175	8725	21812	8725	17448	8725	13088	8725	8724	8724	4362	4362
HTR300	104700	43625	87247	43625	69793	43625	52350	43625	34897	34897	17449	17449

Double Rack Units with Single Set of Cushions (20°)

				Kinetic Ener	gy Rating	g (in-lb) of Cu	shion at	Specified Dr	ve Press	sure*		
	0 PSI		500 PS	SI .	1000 P	SI	1500 F	PSI	2000 F	PSI	2500 F	PSI
Model	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
HTR.9	314	140	209	140	105	105	0	0	0	0	0	0
HTR3.7	1309	548	873	548	436	436	0	0	0	0	0	0
HTR5	1745	942	1163	942	582	582	0	0	0	0	0	0
HTR22	5235	3246	3490	3246	1745	1745	0	0	0	0	0	0
HTR75	5235	3246	2618	2618	0	0	0	0	0	0	0	0
HTR75	26175	8725	17450	8725	8727	8725	0	0	0	0	0	0
HTR300	104700	43625	69801	43625	34907	34907	0	0	0	0	0	0

Double Rack Units with Double Set of Cushions (20°)**

			Kinetic Ener	gy Rating	(in-lb) of Cu	shion at \$	Specified Dri	ve Press	ure*		
0 PSI		500 PS	I	1000 PS	SI	1500 P	SI	2000 P	SI	2500 P	SI
Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability	Max.	Durability
628	297	523	297	419	297	314	297	209	209	105	105
2618	1162	2181	1162	1745	1162	1309	1162	872	872	436	436
3490	1998	2908	1998	2326	1998	1745	1745	1163	1163	582	582
10470	6875	8725	6875	6979	6875	5235	5235	3490	3490	1745	1745
10470	6875	7853	6875	5235	5235	2618	2618	0	0	0	0
52350	18497	43623	18497	34897	18497	26175	18497	17448	17448	8725	8725
209400	92485	174493	92485	139586	92485	104700	92485	69793	69793	34899	34899
	Max. 628 2618 3490 10470 10470 52350	Max. Durability 628 297 2618 1162 3490 1998 10470 6875 10470 6875 52350 18497	O PSI 500 PS Max. Durability Max. 628 297 523 2618 1162 2181 3490 1998 2908 10470 6875 8725 10470 6875 7853 52350 18497 43623	Max. Durability Max. Durability 628 297 523 297 2618 1162 2181 1162 3490 1998 2908 1998 10470 6875 8725 6875 10470 6875 7853 6875 52350 18497 43623 18497	O PSI 500 PSI 1000 PSI Max. Durability Max. Durability Max. 628 297 523 297 419 2618 1162 2181 1162 1745 3490 1998 2908 1998 2326 10470 6875 8725 6875 6979 10470 6875 7853 6875 5235 52350 18497 43623 18497 34897	O PSI 500 PSI 1000 PSI Max. Durability Max. Durability Max. Durability 628 297 523 297 419 297 2618 1162 2181 1162 1745 1162 3490 1998 2908 1998 2326 1998 10470 6875 8725 6875 6979 6875 10470 6875 7853 6875 5235 5235 52350 18497 43623 18497 34897 18497	O PSI 500 PSI 1000 PSI 1500 PSI Max. Durability Max. Durability Max. Durability Max. 628 297 523 297 419 297 314 2618 1162 2181 1162 1745 1162 1309 3490 1998 2908 1998 2326 1998 1745 10470 6875 8725 6875 6979 6875 5235 10470 6875 7853 6875 5235 5235 2618 52350 18497 43623 18497 34897 18497 26175	O PSI 500 PSI 1000 PSI 1500 PSI Max. Durability Max. Durability Max. Durability Max. Durability 628 297 523 297 419 297 314 297 2618 1162 2181 1162 1745 1162 1309 1162 3490 1998 2908 1998 2326 1998 1745 1745 10470 6875 8725 6875 6979 6875 5235 5235 10470 6875 7853 6875 5235 5235 2618 2618 52350 18497 43623 18497 34897 18497 26175 18497	O PSI 500 PSI 1000 PSI 1500 PSI 2000 P Max. Durability Max. Durabil	Max. Durability Max. Durability Max. Durability Max. Durability Max. Durability 628 297 523 297 419 297 314 297 209 209 2618 1162 2181 1162 1745 1162 1309 1162 872 872 3490 1998 2908 1998 2326 1998 1745 1745 1163 1163 10470 6875 8725 6875 6979 6875 5235 5235 3490 3490 10470 6875 7853 6875 5235 5235 2618 2618 0 0 52350 18497 43623 18497 34897 18497 26175 18497 17448 17448	O PSI 500 PSI 1000 PSI 1500 PSI 2000 PSI 2500 PSI <t< td=""></t<>

Must deduct work (energy) done to overcome potential energy effects of load. WPE = TPE $x \Theta$, where Θ is in radians.

Cushion Deceleration Control

The cushion causes the resisting torque that can be used to decelerate a rotational load. Please note the cushion has to provide enough resistance to control: drive torque caused by the hydraulic system pressure; plus the torque caused by gravity pulling on the rotational load; and the kinetic energy associated with the motion of the inertia load. Since the actuator's cushion has to be able to control the sum of all three torque factors, we suggest including cushion capacity as one of the actuator selection criteria.

It is strongly suggested that proportional valves be used instead of cushions to control (decelerate) high inertial loads. This provides the ability to reduce inlet pressure while generating deceleration pressure. It also allows for longer ramp times, thus increasing deceleration stroke.

SUPPLEMENTAL INFORMATION KINETIC ENERGY BASIC FORMULA

 $KE = 1/2 J_m \omega^2$

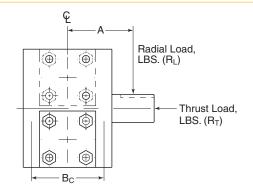
$$ω = 0.0175 \text{ x} \frac{2\Theta A + \Theta C + 2\Theta D}{\text{Rotation Time (sec.)}}$$

KE = Kinetic Energy (in-lb)

J_m = Rotational Mass Moment of Inertia (in-lb-sec²) See page A35 of LTR section for formulas.

 ω = Peak Velocity (rad/sec) (Assuming trapezoidal velocity profile)

 Θ_A = Acceleration Angle (deg)


Θc = Constant Velocity Angle (deg)

 $\Theta_D = Deceleration Angle (deg)$

Extreme care must be exercised so that both cushions are adjusted equally for each direction or dangerous pressure intensification and gear train stresses could result. (Suggest high performance cushion option.)

Bearing Load Capacities

Dynamic ¹ Bearing Load Capacities vs. Operating Pressure

Model HTR.9 HTR1.8 HTR3.7 HTR7.5 HTR5 HTR10 HTR15 HTR30 HTR22 HTR45	Radial Load	(lbs.) R _L (per be	earing) @	Thrust Load	(lbs.) R _T @		_ Bearing	Overhung Mo	oment (in-lb) R _L	x (A+B _c /2) @
Model	1000 PSID (69 bar)	2000 PSID (138 bar)	3000 PSID (207 bar)	1000 PSID (69 bar)	2000 PSID (138 bar)	3000 PSID (207 bar)	Centers (B _c)	1000 PSID (69 bar)	2000 PSID (138 bar)	3000 PSID (207 bar)
HTR.9	3927	3824	3722	2690	2590	2490	0.62	2435	2371	2307
HTR1.8	4030	4030	4030	2790	2790	2790	0.62	2499	2499	2499
HTR3.7	6448	6146	5843	3610	3360	3120	1.06	6835	6514	6194
HTR7.5	6750	6750	6750	3830	3830	3830	1.06	7155	7155	7155
HTR5	8258	7956	7653	4240	4020	3810	1.02	8423	8115	7807
HTR10	8560	8560	8560	4460	4460	4460	1.02	8731	8731	8731
HTR15	14823	14286	13748	12300	11810	11330	1.83	27126	26143	25160
HTR30	15360	15360	15360	12780	12780	12780	1.83	28109	28109	28109
HTR22	14521	13681	na	12060	11330	na	1.83	26573	25037	na
HTR45	15360	15360	na	12780	12780	na	1.83	28109	28109	na
HTR75	20471	18322	16174	16540	14060	11570	3.99	81680	73106	64533
HTR150	22620	22620	22620	19020	19020	19020	3.99	90254	90254	90254
HTR300	38355	33520	28686	24090	19710	15340	5.95	228214	199447	170680
HTR600	43190	43190	43190	28460	28460	28460	5.95	256981	256981	256981

NOTES: 1. Static bearing load capacities = dynamic valves x 1.5

Lubrication

In general, low speed, high torque applications require class 5 or class 6 lubrication provisions. Our assemblers use TEXACO MOLYTEX EP(2) extreme pressure grease to lubricate our gear sets as our standard lubricant. The grease should be replaced with each major overhaul.

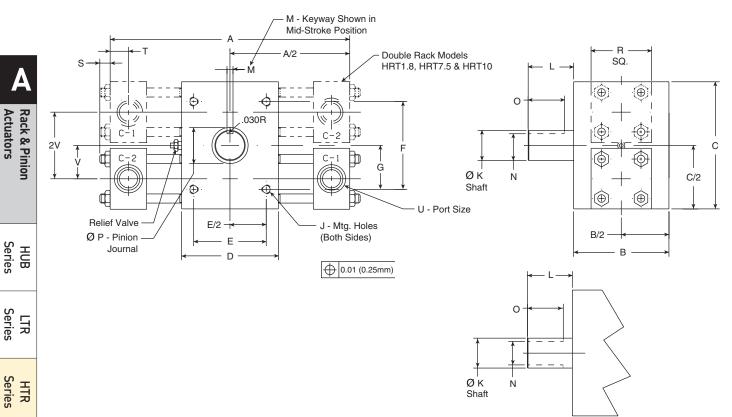
Some high cycle applications with an operational system pressure below 1000 PSIG (69 Bar) and with adequate mechanical shock control may successfully use the hydraulic fluid as the gear train lubricant. We can modify the housing by adding a case drain line to carry away excessive lubricant. Ensure the case drain connection is looped to ensure the housing remains filled with lubricant.

High performance applications that feature high pressure and high cycle rates should consider using an external lubrication circuit system to charge the gear set with clean, cool lubricant suitable for class 3 or 4 service. An SAE80 or SAE90 lubricant circulating system should be suitable. We can modify the housing for a lubrication circuit inlet and outlet. Ensure the plumbing is run in such a way the housing remains filled with lubricant.

Rack & Pinion

HUB Series

Series


HTR Series

> M Series

^{2.} Values listed are "Bearing" moment capacities. Standard male shaft sizes do not provide 4:1 design factor at these operating conditions. Larger shaft sizes are available. Consult factory for further details.

HTR.9 thru HTR10 Single and Double Rack

Inch Units with Face Mount (A) and Male Keyed Shaft (B) Metric Units with Face Mount (C) and Male Keyed Shaft (H)

(Revised 02-29-16)

Metric Keyed Shaft

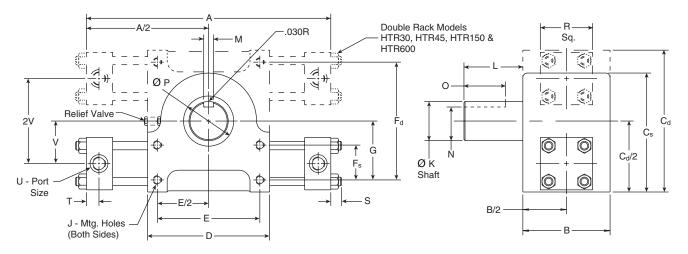
Dimensions, Inch

M Series

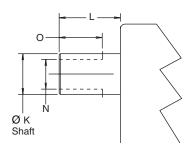
Model	Rotation Degrees	Α	В	С	D	E	F	G	J	K†	L	M [†]	N [†]	0	P	R	s	Т	U (SAE)	V
UTDO	90	7-1/4							5/16-18	075		250	700						0/10 10	
HTR.9 HTR1.8	180	9-1/8	3	3-5/8	3-1/2	2.625	2.375	1.188	Χ	.875 .874	1-5/16	.250 .252	.732 .722	1	1	1-3/4	.38	.50	9/16-18 (#6)	0.94
	360	12-7/8							1/2 DP	.07 +		.202	.122						(110)	
HTR3.7 HTR7.5 $\frac{9}{1}$ HTR5 HTR10	90	10-1/8							3/8-16	1.050		011	1.074						0/10 10	
	180	13-1/8	3-15/16	5-1/4	4	3.000	3.625	1.813	Χ	1.250 1.249	1-7/8	.311 .312	1.074 1.064	1-1/2	1-1/2	2-1/2	.52	.72	9/16-18 (#6)	1.38
	360	18-1/4							9/16 DP	1.240		.012	1.004						(110)	
	90	11-3/8							3/8-16	1 750		400	1 500						0/10 10	
	180	14-5/8	3-15/16	6	4	3.000	5.000	2.500	Χ	1.750 1.749	2-5/8	.438 .440	1.500 1.490	2	1-25/32	2-1/2	.52	.72	9/16-18 (#6)	1.63
	360	22-1/8							9/16 DP	1.173		40	1100						(110)	

Dimensions, Metric (mm)

Model	Rotation Degrees	Α	В	С	D	E	F	G	J	K +0,02	L	M P9	N +0,02	0	P	R	s	Т	U BSPP/G	V
UTD 0	90	184.2							M8											
HTR.9 HTR1.8	180	231.8	76.2	92.1	88.9	70	60	30	x 1.25	22	33	6	18.5	25.4	25.4	44.5	9.6	12.7	1/4	23.8
	360	327.0							x 13 DP											
HTR3 7	90	257.2	_						M10											
	180	333.4	100.0	133.4	101.6	75	90	45	x 1.5	28	48	8	20	38.1	38.1	63.5	13.3	18.3	1/4	34.9
HIK/.5	360	463.6							x 16 DP											
UTDE	90	288.9							M10											
HTR5 HTR10	180	371.5	100.0	152.4	101.6	75	125	62.5	x 1.5	44	66	12	39	50.8	44.5	63.5	13.3	18.3	1/4	41.3
HTR10 $\frac{18}{2}$	360	562.0							x 16 DP											


[†] Tolerance minimum and maximum

Dimensional Data


HTR15 thru HTR600 Single and Double Rack

Inch Units with Face Mount (A) and Male Keyed Shaft (B) Metric Units with Face Mount (C) and Male Keyed Shaft (H)

Dimensions

Model	Rotation Degrees	A (inch)	A (mm)
	90	16	406.4
HTR15/30	180	21-3/8	543.0
	360	32-1/8	816.0
	90	16-3/8	416.0
HTR22/45	180	21-3/4	552.5
	360	32-3/8	822.3
	90	20-1/4	514.4
HTR75/150	180	27-5/8	701.7
	360	42-1/4	1073.2
	90	31-1/4	793.8
HTR300/600	180	43-3/4	1111.3
	360	68-7/8	1749.4

Metric Keyed Shaft

Dimensions, Inch

Model	В	Cd	Cs	D	E	Fd	Fs	G	J	K [†]	L	M [†]	N [†]	0	P	R	S	T	U (SAE)	V
HTR15	5		6-7/8	- 7	5.875	_	2.000	3.375	1/2-13 x	2.250	3-3/8	.563	1.933	2-3/8	2-7/8	2	.67	.72	3/4-16	2-7/16
HTR30	3	8-1/8	-	1	0.070	6.750	-	3.373	3/4 DP	2.249	J-J/0	.565	1.923	2-3/0	2-1/0	ა	.07	.12	(#8)	2-7/10
HTR22	5	-	6-15/16	- 7	5.875	-	2.000	3.375	1/2-13 x	2.250	3-3/8	.563 .565	1.933	2 2/0	2 7/0	3-1/2	67	.72	3/4-16	2-7/16
	8-3/8	-	1	3.073	6.750	-	3.373	3/4 DP	2.249	3-3/0	.565	1.923	2-3/0	2-1/0	3-1/2	.07	.12	(#8)	2-1/10	
HTR75 HRT150 7-1/2 1		10	8-1/2	6.500		4.500	5.750	3/4-16 x	3.000	4-1/2	.750 .752	2.577	2_2/2	3-3/4	5	.82	.84	1-1/16-12	2_1/2	
	13	-	0-1/2	0.300	11.500		3.730	1-1/8 DP	2.999	4-1/2	.752	2.567	3-3/0	3-3/4	5	.02	.04	(#12)	3-1/2	
		15-1/4	15_7/0	13.000	-	5.000	7.625	1-1/4-7 x	5.000	7-1/2	1.250	4.296	6	6-1/2	7-1/2	1 22	1.25	1-5/16-12	5_1/0	
	18-3/4	-	13-1/0	13.000	13.500	-	6.750	1-7/8 DP	4.999	1-1/2	1.252	4.286	U	0-1/2	1-1/2	1.22	1.20	(#16)	3-1/0	

Dimensions, Metric (Metric male and female shafts have 2 keyways)

Model	В	Cd	Cs	D	E	Fd	Fs	G	J	K +0,02	L	M P9	N +0,02	0	Р	R	s	Т	U BSPP/G	V
HTR15	127 0		174.6	- 177.8	150		50	85	M12x1.75 54	86	16	42	60	73.0	76.2	17.0	18.3	1/2	61.9	
HTR30		-	177.0	130	170	-	00	x19 DP	J4		10			7 0.0	10.2	17.0	10.5		01.5	
HTR22	127 0	7.0 – 176.2	- 177.8	150	-	50	— 85	M12x1.75 x19 DP 54	5.4	86 16	16	16 42	60 73	73.0	88.9	17.0	18.3	1/2	61.9	
HTR45		-	177.0	130	170	-			J4 (10			73.0	00.9				01.5	
HTR75	190.5	-	254.0	- 215.9	9 165	-	115	145	M20x2.5 x30 DP	76	115	22	58	85	95.3	127.0	20.7	21.3	3/4	88.9
HTR150	190.5	330.2	-	210.9	100	290	_	- 145			113	22					20.7	21.3		
HTR300	30/1 X		387.4	402.2	220	-	125	175	M30x3.5	125	05 100	20 00	0 100	00 450	105.1	100 5	21.0	21.0	1	120.2
HTR600		476.3	-	403.2	330	350	- 195	x48 DP 125	120	190	32	103	152	165.1	190.5	31.0	31.8	ļ	130.2	

A57

[†] Tolerance minimum and maximum

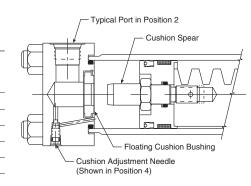
Rack & Pinion Actuators

Cushions (1, 2, 3, 4) *

The standard cushion operates over the last 20° of rotation in either or both directions. A floating bushing ensures no binding of cushion spear. All cushions are fully adjustable.

For severe operating conditions high performance cushions should be fitted on double rack units. On double rack units with only two cushions, cushions are located on upper cylinders.

For double rack units where Option 4 (four cushions) is selected please take special care to make sure that adjacent cushions (ie both C-1 ports) are adjusted to the same cushion setting so as to ensure that both cushions are working together. An improper setting could result in one of the cushions not being utilized and thus result in premature gear train life or other damage to the unit.


* For gear train durability, see table below.

Standard Cushion Adjuster Needle Locations

(Revised 05-26-17)

Port position	Cushion adjuster position
1	2
2	3
3	2
4**	3
5	2

**Single rack only

Suggestions: Use either Type 4 or Type 8 cushion option with HTR1.8. 7.5, 30, 45, 150 and 600 size actuators. Avoid Type 1, 2 or 3 cushions with double rack units. The use of proportional valves instead of cushions is recommended with high inertial loads.

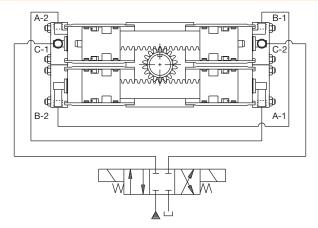
High Performance Cushion (8)

(This option available with double rack units only)

By combining the output/exhaust flow from two cylinders, then routing it through a single cushion bushing and cushion adjuster, cushion performance is enhanced. The increased cushion flow results in better control, doubles the cushioning torque, and eliminates dangerous pressure intensification. This unique circuit also eliminates two pipe or tubing tees.

Operation:

Rack & Pinion Actuators


The work ports of a standard directional valve are plumbed to ports C-1 and C-2. Port A-1 is plumbed directly to A-2, and port B-1 is plumbed to B-2. When pressure is applied to port C-1 (clockwise shaft rotation). fluid is also directed through line A to the other rack. Exhaust flow from B-1 through B-2 is directed through the cushion bushing and cushion adjustment. When the cushion spear closes off the main passage, total flow from both end caps is directed across one cushion adjustment needle, equalizing back pressure and improving performance. Alternatively, pressurizing C-2 and exhausting C-1 reverses the operation.

Dimensional Information:

Units are identical to standard double rack and pinion units, with the exception of porting location. The chart describes the location of the ports.

Gear Set Durability

The table to the right provides energy ratings based on gear train durability when using various cushion options for the HTR Series.

Work ports C-1, C-2 port position	Cushion adjustment position	Connection ports A-1, A-2 & B-1, B-2 port position
1	2	3
2	3	1
3	2	1
5	2	3

	Total energy	capacity (in-lb)	Port to port ∆P (PSID)				
Model	Code 1,2,3	Code 8	Code 1,2,3	Code 8			
HTR.9	140	_	1340	_			
HTR1.8	140	297	670	1340			
HTR3.7	548	_	1300	_			
HTR7.5	548	1162	650	1300			
HTR5	942	_	1620	_			
HTR10	942	1998	810	1620			
HTR15/22	3246	_	1860/1240	_			
HTR30/45	3246	6875	930/620	1860/1240			
HTR75	8725	_	1000	_			
HTR150	8725	18497	500	1000			
HTR300	43625	_	1250	_			
HTR600	43625	92485	625	1250			

Stroke Adjusters

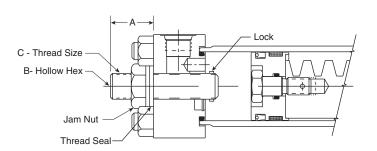
Fine control of the end of travel points of the rotary actuator can be obtained by specifying stroke adjusters. These operate by reducing the maximum travel of the actuator within preset limits of either 5° or 30° in each direction. Adjustment within this range is variable and may be carried out by the user. Several types of stroke adjusters are available as shown – the designs illustrated are suitable for applications requiring infrequent adjustment.

Limit the setup of stroke adjust to 1-2 adjustments. If frequent adjustments are required, consult factory.

Stroke Adjusters and Cushions

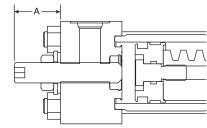
5° stroke adjusters may be combined with the cushioning devices shown. 30° stroke adjusters cannot be combined with cushions. The addition of stroke adjusters requires an increase in build length. On double rack units with cushions, the cushion is fitted to the upper rack and the stroke adjuster to the lower. The increase in build length, for both single and double rack units, is shown as dimension A in the table. Cushion performance may be reduced by the addition of a stroke adjuster. Please consult the factory in critical applications.

A

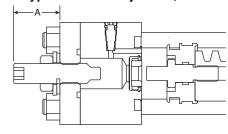

Rack & Pinion

HUB Series

LIK Series


HTR

M Series



Lock limits unthreading from outside. **Caution:** damage to end cap may result if disassembled in this direction.

Type I Stroke Adjusters, 5° and 30°

Type II Stroke Adjusters, 5°

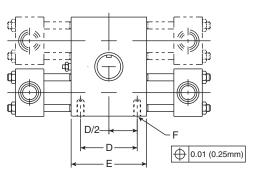
Α ((max) –	Increased		bui	ld	lengt	ŀ
-----	------	-----	-----------	--	-----	----	-------	---

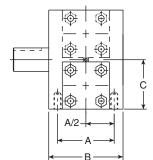
	One (1) turn	TYPE I 5° adjustment without cushioned end cap		TYPE II 5° adjustment with cushioned end cap		TYPE I 30° adjustment without cushioned end cap				
Model	adj.	inch	mm	inch	mm	inch	mm	В	С	
HTR.9 HTR1.8	4.2°	.50	12.7	.88	22.4	.75	19.1	5/32	5/16 - 24 UNF	
HTR3.7 HTR7.5	3.3°	.63	16	1.13	28.7	1.13	28.7	1/4	1/2 - 20 UNF	
ITR5 ITR10	2.5°	.63	16	1.13	28.7	1.13	28.7	1/4	1/2 - 20 UNF	
HTR15/30 HTR22/45	2.0°	.88	22.4	1.81	46	1.63	41.4	3/8	3/4 - 16 UNF	
ITR75 ITR150	2.0°	2.56	65	3.75	95.3	3.56	90.4	15/16 Ext. Sq.	1-1/2 - 12 UNF	
ITR300 ITR600					Consu	ult Factory				

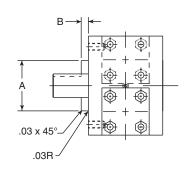
Rack & Pinion Actuators

HUB Series

Parker Pneumatic


Base and Pilot Mounting


HTR Series rotary actuators are available with the options of face, base, or pilot mounting styles to suit the requirements of different applications. Mounting dimensions for the face mounting styles are shown with other major dimensions on the previous pages. The equivalent dimensions for base and pilot mounting styles are shown in the tables below.


Model	Mounting Hole Bolt Size	Suggested Bolt Torque	Mounting Face Torque Limit*
HTR.9 HTR1.8	5/16-18 UN x 12 dp	126 in-lb	900 in-lb 1800 in-lb
HTR3.7 HTR7.5	3/8-16 UN x 9/16 dp	300 in-lb	3750 in-lb 7500 in-lb
HTR5 HTR10	3/8-16 UN x 9/16 dp	300 in-lb	7500 in-lb 10,000 in-lb
HTR15 HTR30	1/2-13 UN x 3/4 dp	60 ft-lb	15,000 in-lb 15,000 in-lb
HTR22 HTR45	1/2-13 UN x 3/4 dp	60 ft-lb	30,000 in-lb 30,000 in-lb
HTR75 HTR150	3/4-16 UN x 1-1/8 dp	160 ft-lb	63,500 in-lb 99,740 in-lb
HTR300 HTR600	1-1/4-7 UN x 1-7/8 dp	720 ft-lb	300,000 in-lb 600,000 in-lb

^{*}Without additional reinforcement.

Mounting Options (B, D, P, T)

Base Mounting, Inch (B)

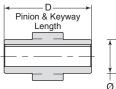
Model	Α	В	С	D	E	F
HTR.9 HTR1.8	2.250	3	1.813	2.625	3-1/2	5/16-18 NC x 1/2 DP
HTR3.7 HTR7.5	3.000	3-15/16	2.625	3.000	4	3/8-16 NC x 9/16 DP
HTR5 HTR10	3.000	3-15/16	3.000	3.000	4	3/8-16 NC x 9/16 DP
HTR15/30 HTR22/45	3.875	5	4.063 4.188	5.875	7	1/2-13 NC x 3/4 DP
HTR75 HTR150	5.750	7-1/2	6.438	6.500	8-1/2	3/4-16 NF x 11/8 DP
HTR300 HTR600	9.500	12	9.375	13.000	15-7/8	11/4-7 NC x 17/8 DP

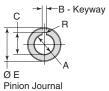
Base Mounting, Metric* (D)

		J ,		,		
Model	Α	В	С	D	E	F
HTR.9 HTR1.8	60	76.2	46.1	70	88.9	M8 x 1.25 x 13
HTR3.7 HTR7.5	75	100.0	66.7	75	101.6	M10 x 1.5 x 16
HTR5 HTR10	75	100.0	76.2	75	101.6	M10 x 1.5 x 16
HTR15/30 HTR22/45	100	127.0	103.2 106.4	150	177.8	M12 x 1.75 x 19
HTR75 HTR150	146	190.5	163.5	165	215.9	M20 x 2.5 x 30
HTR300 HTR600	240	304.8	238.2	330	403.2	M30 x 3.5 x 48

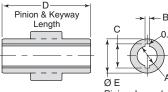
Pilot Mounting, Inch (P), Metric (T)

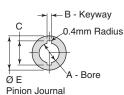
Inch		Metric*	
Α	В	Α	В
1.875 1.873	1/4	47.63	6.5
2.625 2.623	1/4	66.68	6.5
2.875 2.873	1/4	73.03	6.5
4.250 4.248	3/8	107.95	10
5.500 5.498	3/8	139.67	10
8.750 8.748	1/2	225.25	12
	1.875 1.873 2.625 2.623 2.875 2.873 4.250 4.248 5.500 5.498 8.750	A B 1.875 1.873 1/4 2.625 2.623 1/4 2.875 2.873 1/4 4.250 4.248 5.500 5.498 8.750 1/2	A B A 1.875 1.873 1/4 47.63 2.625 1.44 66.68 2.875 1.74 73.03 4.250 3/8 107.95 5.500 3/8 139.67 8.750 1/2 225.25

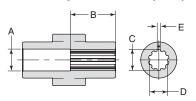

^{*}Dimensions given in mm.


Single Male Keyed (B)

Metric version (H) also available


Model	Torque, in-lb	Key Size	Suggested Key Material
HTR.9 / HTR1.8	1,800	1/4 x 1/4 x 1	C1018CR
HTR3.7 / HRT7.5	7,500	5/16 x 5/16 x 1-1/2	C1018CR
HTR5 / HTR10	10,000	7/16 x 7/16 x 2	C1018CR
HTR15 / HTR30	30,000	9/16 x 9/16 x 2-3/8	C1018CR
HTR22 / HTR45	30,000	9/16 x 9/16 x 2-3/8	C1018CR
HTR75 / HTR150	102,000	3/4 x 3/4 x 3-3/8	C1045CR
HTR300 / HTR600	475,000	1-1/4 x 1-1/4 x 6	C1018CR


Female Keyed Shaft (A)



Metric Female Keyed Shaft (G)

Female Splined Shaft (D, L)

30° involute splined female shafts available for HTR300/600 (J). Consult factory.

Option A* Option G (DIN 6886)** Model Α[†] B[†] C† D Е R **A** H7 **B** P9 **C** +.04 D Ε HTR.9 .625 .187 .709 2.94 1.00 .030 16 5 20.6 74.6 25.4 HTR1.8 .626 .189 .719 **HTR3.7** .875 .187 .964 3.88 1.50 .015 22 6 27.6 98.4 38.1 .974 HRT7.5 .876 .189 HTR5 1.250 .250 1.367 3.88 1.78 .030 32 10 38.6 98.4 44.5 HTR10 1.252 .252 1.377 HTR15 2.000 .500 2.223 4.94 2.88 .030 48 14 55.6 125.4 73.0 HTR30 2.003 2.233 .502 HTR22 2.000 .500 2.223 4.94 2.88 .030 48 14 55.6 125.4 73.0 HTR45 2.003 .502 2.233 HTR75 2.750 .750 3.032 7.44 3.75 .030 72 20 81.8 188.9 95.2 HTR150 2.755 .753 3.042 HTR300 5.000 1.250 5.366 11.94 6.50 125 32 139.8 303.2 165.1 .030 HTR600 5.005 1.252 5.376

	Optio	n D (10E	3 Spline)	*		Opti	— No. of				
Model	Α	В	C [†]	\mathbf{D}^{\dagger}	Ε [†]	Α	В	С	D	Е	Splines
HTR.9 HTR1.8	.66	.63	.625 .624	.538 .537	.098 .096	17	16	16	13	3.5	6
HTR3.7 HRT7.5	.91	.88	.876 .875	.753 .752	.137 .135	23	22	22	18	5	6
HTR5 HTR10	1.16	1.3	1.125 1.124	.968 .967	.176 .174	29	29	28	23	6	6
HTR15 HTR30	2.03	2.00	2.000 1.998	1.720 1.718	.312 .309	49	50	48	42	8	8
HTR22 HTR45	2.03	2.00	2.000 1.998	1.720 1.718	.312 .309	49	50	48	42	8	8
HTR75 HTR150	3.03	3.00	3.000 2.998	2.580 2.578	.468 .465	73	76	72	62	12	8

\mathbf{D}^{\dagger} С Model Α В C[†] Ε[†] Α В D Е **Splines** HTR.9 .873 .747 .134 Male Splined Shaft (E, M) 1.34 33 22 22 18 5 6 .88 HTR1.8 .872 .742 .133 **HTR3.7** 1.248 1.069 .192 1.91 48 28 28 23 6 6 1.25 HRT7.5 1.246 1.064 .191 HTR5 1.748 1.499 .270 2.65 1.75 66 44 42 36 7 8 HTR10 1.746 1.494 .269 HTR15 2.247 1.928 .347 9 8 3.41 2.25 86 58 54 46 HTR30 2.245 1.923 .346 Mounting HTR22 2.247 1.928 .347 3.41 46 9 8 2.25 86 58 Face of Unit HTR45 2.245 1.923 .346

2.997

2.995

Option E (10B Spline)*

30° involute splined female shafts available for HTR300/600 (P,V). Consult factory.

4.53

3.00

A61

HTR75

HTR150

2.573

.464

.463

115

76

72

Option M (DIN/ISO 14)**

62

12

8

No. of

^{*} Dimensions in inches

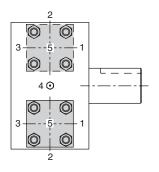
^{2.568} ** Dimensions in mm

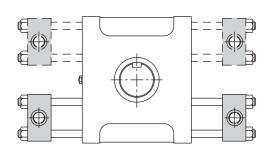
[†] Tolerance minimum and maximum

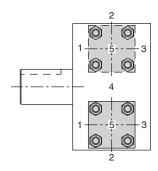
Port Sizes and Positions

The standard port styles for HTR Series rotary actuators are SAE and BSP (parallel) port, but NPTF, flanged and metric port styles to DIN 3852/1 and ISO 6149/1 are also available. The relevant sizes of port for each model of rotary actuator

Ports will be supplied in position 1, as shown in the diagram, unless a different position is specified on the order. Ports are available in positions 2, 3, and 4 at no extra cost; position 5 is available as an extra cost option.


Air Bleeds


Rack & Pinion Actuators


Series

These may be fitted in end cap positions unoccupied by ports or cushions specify location in clear text.

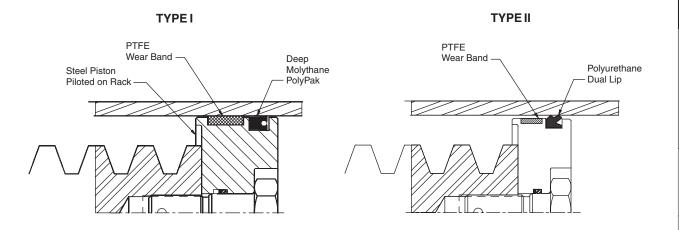
Port Locations

NOTE:

- 1. Port position 1 is standard.
- 2. Port position 2, 3 and 4 are standard options available at no additional cost.
- 3. Port position 5 is available at additional cost; not available with stroke adjusters.

Port types and sizes

Model	Standard SAE Straight Thread (1)	Code 61 SAE Flange (3)	NPT (2) BSPP (4)	Metric DIN (5)* or ISO (6)
HTR.9 HTR1.8	9/16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR3.7 HTR7.5	9/16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR5 HTR10	9/16 - 18 (SAE 6)	N/A	1/4	M14 x 1.5
HTR15 HTR30	3/4 - 16 (SAE 8)	N/A	1/2	M22 x 1.5
HTR22 HTR45	3/4 - 16 (SAE 8)	N/A	1/2	M22 x 1.5
HTR75 HTR150	11/16 - 12 (SAE 12)	3/4	3/4	M27 x 2
HTR300 HTR600	15/16 - 12 (SAE 16)	1	1	M33 x 2


^{*} DIN 3852/1

^{**} ISO 6149/1 (Not available with HTR.9 or HTR1.8)

Seal Materials (V, W)

Effective filtration is vital to the long life and satisfactory performance of a rotary actuator. If the piston seals of a rack and pinion rotary are worn or damaged, fluid which leaks past the piston will enter the gear housing. In the event of internal leakage into the gear housing, the pressure relief valve protects the shaft seal.

Seal class	Seal type	Wear ring type	Fluid medium	Temperature range	e Pressure range	Filtration
Standard Type 1 *	Molythane PolyPak	Filled PTFE	General purpose, Petroleum-based fluids	-40°F to 180°F -40°C to 82°C	3000 PSI 207 bar	
Standard Type II **	Polyurethane Dual Lip	Filled PTFE	General purpose, petroleum-based fluids	-40°F to 180°F -40°C to 82°C	3000 PSI 207 bar	Minimum ISO Class 17/14
Fluorocarbon (V)	Fluorocarbon	Filled PTFE	High temperature and/or synthetic fluids	-20°F to 250°F -29°C to 121°C	3000 PSI 207 bar	Cleanliness Level
Nitrile (W)	Carboxylated Nitrile	Filled PTFE	Water Glycol, high water content fluids	30°F to 180°F 0°C to 82°C	2000 PSI 138 bar	

Standard on HTR.9/1.8, 3.7/7.5 and 5/10

Seal Kit Ordering Information

- Standard units are equipped with nitrile seals.
- Optional seal compounds are available.
- See parts list for items contained in seal kits.

The seal kit is equipped with parts necessary to re-seal Design
Series "A", "B" or "C" HTR Series rotary actuators. If the actuator
model number ends in C###, call factory for seal kit part number.

PSK	_	HTR.9
Parker Seal Kit		Base Model

V			
Omit	=	Nitrile Seals (Std)	
٧	=	Fluorocarbon Seals	
W	=	Carboxylated Nitrile Piston Seals	

Rack & Pinion

Series

Series

HTR Series

Series

^{**} Standard on HTR15/30, 22/45, 75/150 and 3000

Proximity Switches

(Namco Cylindicators or **Balluff Cylinder Indicator Sensor)**

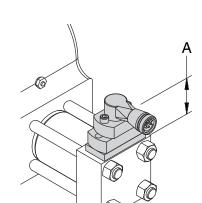
The inductive type proximity switch provides end of rotation indication. The non-contact probe senses the presence of the ferrous cushion spear and has no springs, plungers, cams or dynamic seals that can wear out or go out of adjustment. The switch is solid state and meets NEMA 1, 12 & 13 specifications. For ease of wiring the connector housing is rotatable through 304°. To rotate, lift the cover latch, position and release.

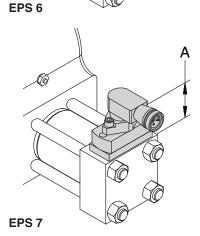
(Revised 06-22-17)

The switch make/break activation point may occur at 0.125" to ±0.125" from the end of stroke. Depending on the actuator size, this distance may cause activation at 2° to 15° from end of stroke.

The standard proximity switch controls 50-230 VAC/DC loads from 5 to 500 mA. The low 1.7 mA off-state leakage current can allow use for direct PLC input. The standard short circuit protection (SCP) protects the switch from a short in the load or line upon sensing such a condition (5 amp or greater current) by assuming a non-conductive mode. The fault condition must be corrected and the power removed to reset the switch preventing automatic restarts.

The low voltage DC switch is also available for use with 10-30 VDC. The switch is in a non-rotatable housing, but does incorporates the short circuit protection.


Both switches are equipped with two LEDs, "Ready" and "Target". The "Ready" LED is lit when power is applied and the cushion spear is not present. The "Target" LED will light and the "Ready" LED will go out when the switch is closed, indicating the presence of the cushion spear. Both LEDs flashing indicates a short circuit condition.


Order proximity sensors separately. See Sensors section for specifications and ordering information.

NOTES:

Rack & Pinion Actuators

- 1. Available with or without cushions.
- 2. Not available with stroke adjusters.
- 3. Pressure rating: 3000 psi
- 4. Operating temperature: -4°F to 158°F
- 5. Specify switch type, orientation and voltage when ordering.
- 6. The low voltage DC switch is available in nonrotatable style only, consult representative for further information.

	A, inch (mm)	
Model	EPS 6 & 7	
HTR.9 HTR1.8	2.21 (56.1)	
HTR3.7 HTR7.5	2.70 (68.6)	
HTR5 HTR10	2.70 (68.6)	
HTR15 HTR30	2.64 (67.0)	
HTR22 HTR45	2.37 (60.2)	
HTR75 HTR150	1.87 (47.5)	
HTR300 HTR600	3.45 (87.6)	

Feedback Packages

Feedback packages available for use with HTR Series rotary actuators include:

- Precision feedback potentiometer (J)
- Precision resolver feedback (H)
- Linear potentiometer feedback (Oildyne Teknar)
- LDT feedback (MTS Temposonics)

The feedback potentiometer (J) and resolver feedback (H) may be ordered as part of the model code. The other options must be ordered separately as specials. See Sensors section for specifications.

